

Soil Test Report

Prepared For:

Byron Palmer Sonoma Mountain Institute 4080 Manor Lane Petaluma, CA 94954

byronpalmer@hotmail.com 619-818-7669

Soil and Plant Tissue Testing Laboratory

203 Paige Laboratory 161 Holdsworth Way University of Massachusetts Amherst, MA 01003 Phone: (413) 545-2311

e-mail: soiltest@umass.edu website: soiltest.umass.edu

Sample Information:

Sample ID: C3 2016

Order Number: 21757

Lab Number: \$160419-226 Area Sampled: 20 acres Received: 4/19/2016 Reported: 5/6/2016

Results

Analysis	Value Found	Optimum Range	Analysis	Value Found	Optimum Range
Soil pH (1:1, H2O)	5.4		Cation Exch. Capacity, meq/100g	13.8	
Modified Morgan extractable, ppm			Exch. Acidity, meq/100g	7.1	
Macronutrients			Base Saturation, %		
Phosphorus (P)	0.5	4-14	Calcium Base Saturation	36	50-80
Potassium (K)	261	100-160	Magnesium Base Saturation	8	10-30
Calcium (Ca)	989	1000-1500	Potassium Base Saturation	5	2.0-7.0
Magnesium (Mg)	131	50-120	Scoop Density, g/cc	1.03	
Sulfur (S)	8.6	>10	Optional tests		
Micronutrients *			Soil Organic Matter (LOI), %	4.9	
Boron (B)	0.0	0.1-0.5			
Manganese (Mn)	11.9	1.1-6.3			
Zinc (Zn)	1.4	1.0-7.6			
Copper (Cu)	0.1	0.3-0.6			
Iron (Fe)	3.8	2.7-9.4			
Aluminum (Al)	41	<75			
Lead (Pb)	0.0	<22			

Micronutrient deficiencies rarely occur in New England soils; therefore, an Optimum Range has never been defined. Values provided represent the normal range found in soils and are for reference only.

Soil Test Interpretation

Nutrient	Very Low	Low	Optimum	Above Optimum
Phosphorus (P):				
Potassium (K):				
Calcium (Ca):				
Magnesium (Mg):				

Soil and Plant Tissue Testing Laboratory

203 Paige Laboratory 161 Holdsworth Way University of Massachusetts Amherst, MA 01003 Phone: (413) 545-2311

e-mail: soiltest@umass.edu website: soiltest.umass.edu

Recommendations for Data only (including micronutrients)

Comments:

-Avoid overfertilization. In addition to threatening water quality, excessive nutrient applications can compromise plant health and contribute to insect and disease problems. For details, see Reference "Over-Fertilization: Its Causes, Effects and Remediation" (listed below).

References:

Over-Fertilization: Its Causes, Effects and Remediation http://soiltest.umass.edu/fact-sheets/over-fertilization-soils-its-causes-effects-and-remediation

General References:

Interpreting Your Soil Test Results http://soiltest.umass.edu/fact-sheets/interpreting-your-soil-test-results

For current information and order forms, please visit http://soiltest.umass.edu/

UMass Extension Nutrient Management http://ag.umass.edu/agriculture-resources/nutrient-management